Monika Burri. “Die wissenschaftliche Materialprüfung. Institutionalisierung einer neuen Disziplin” and “Die ETH als Dienstleisterin. Die Versuchsanstalt für Wasserbau,” in ETHistory 1855-2055. Sightseeing durch 150 Jahre ETH Zürich, eds. Monika Burri and Andrea Westermann (Baden: Hier + Jetzt, 2005): 67–71 & 89–92. The working areas of EMPA and EAWAG were divided in 1951, and the land for the new campus acquired subsequently.
Founded in 1881, EMPA focused from the very beginning on quality control in building science. Carrying out strength tests against tearing, crushing, twisting, and bending under Ludwig Tetmajer, it helped concrete triumph as a modern material in Switzerland. Sarah Nichols, as part of her PhD dissertation “Opération Béton. Constructing Concrete in Switzerland 1871–1972” (2021), included Tetmajer’s early bridge loading test with “Portland cement concrete” and the performances during the 1939 Swiss national exhibition. In the 1980s, EMPA then tried to navigate between the poles of high-tech and ecology, see: Brigitte Honegger. “Die Empa im Spannungsfeld zwischen High-Tech und Umweltschutz,” Schweizer Ingenieur und Architekt 105, no. 35 (1987): 1018–1019.
In Switzerland, the Mingerie label came to dominate the market. For a prehistory of Swiss sustainability certificates, see: Kim Förster. “Umdenken Umschwenken: Environmental Engagement and Swiss Architecture,” in Routledge Companion to Architecture and Social Engagement, ed. Farhan Karim (New York and London: Routledge, 2018): 271–288. For a critique of sustainability certificates from an American perspective, see: Reinhold Martin. “Risk: Excerpts from the Environmental Division of Labor,” in Climates: Architecture and the Planetary Imaginary, ed. James Graham (New York and Zurich: Columbia Books on Architecture and the City and Lars Müller Publishers, 2016): 349–359.
As part of my research, I interviewed both Fabio Gramazio and Matthias Kohler (January 29, 2020) as architects, and Peter Richner (March 5, 2020) as Deputy Director of EMPA.
It remains unanswered whether, at that time of EMPA commissioned Gramazio Kohler for NEST, an alternative material, biogenic or even recycled (wood or steel) would have been quite conceivable and communicable for the structure, especially since it is a pilot and demonstration project.
This science campus, manifesting the functional separation of EMPA, EAWAG, and ETH, was the most expensive civic building in Swiss post-war history at CHF 64 million at the time; see: “Die Empa in Dübendorf,” Schweizer Bauzeitung 80, no. 15 (1962): 262–263; Eduard Amstutz, “ETH und Empa,” Schweizer Bauzeitung 81, no. 22 (1963): 415–416; “Leistungen und Aufgaben der Empa,” Schweizer Bauzeitung 81, no. 46 (1963): 803–806. The EMPA campus, designed by Werner Forrer, encompassed a wood test house, an engine house, a construction hall, a metal hall, a crane hall, a formwork hall, and a fire hall, as well as service infrastructures, gravel and sand preparation, refractory materials, and a tank facility. Eduard Amstutz, “Die Neubauten der Empa,” Schweizer Bauzeitung 81, no. 46 (1963): 806–808. The construction hall then offered space for modern testing facilities of whole building parts.
Environmental imaginaries can be traced back to those of space and society, which apply already understood processes to the future. Julie Cidell. “Environmental Imaginaries,” in Encyclopedia of Geography, ed. Barney Wharf (Thousand Oaks: Sage, 2010): 933–934. The question is, what critical potential they have to address issues of social and environmental justice. Chris Hagerman. “Ecological Imaginaries,” in Wharf, ed., Encyclopedia of Geography, 829–830.
If, in the relationship between the university to the city, the transfer of knowledge to the users is a stated problem, a more critical perspective points to the long history of the connection between the university and the needs of industry, see: Tim May and Beth Perry. “Cities, Knowledge and Universities: Transformations in the Image of the Intangible” Social Epistemology 20, nos. 3–4 (2006): 259–282; see also Tim May and Beth Perry, Cities and the Knowledge Economy (New York and London: Routledge, 2018).
The conservative, business-friendly Neue Zürcher Zeitung reported that NEST’s task was to bring innovative products, technologies, and materials to market more quickly. Christian Speicher, “Ein wohnliches Labor,” NZZ, May 23, 2016. The Tagesanzeiger, a more left leaning daily, also from Zurich, described NEST as “architektonische eierlegende Wollmilchsau” (a jack-of-all-trades building) because it takes a holistic view on energy transition. Martin Läubli, “Superhaus der Zukunft,” TA, May 22, 2016. The message was always the same, and with almost identical wording: that NEST is not a “Luftschloss” (castle in the air); that it works and is ready for everyday use; that, in the future, the focus shall be on building in an environmentally friendly way, recycling materials, and saving energy, etc.
Richner, in our interview, explained that both energy and water use get measured, but the results are secondary. “Living labs” have a longer tradition beginning in the 1970s, when originally developed for studies of energy, energy production, and energy consumption. For contemporary laboratory studies see: Florian Hoof, Eva-Maria Jung, and Ulrich Salaschek, eds., Jenseits des Labors. Transformationen von Wissen zwischen Entstehungs- und Anwendungskontext (Bielefeld: Transcript Verlag, 2011).
Sociologist Bruno Latour was once, with Steven Woolgar, a co-founder of science and technology studies, see: Bruno Latour and Steven Woolgar. Laboratory Life: The Construction of Scientific Facts (Los Angeles: Sage, 1979). Later, Latour applied the approach of laboratory study to the construction of laboratories and their position in the societal milieu, see Bruno Latour. “Give Me a Laboratory and I Will Raise the World,” in Science Observed: Perspectives on the Social Study of Science, eds. Karin Knorr-Cetina and Michael Mulkay (London: Sage, 1983): 141–170. The focus, however, stayed observing science in the making, see: Bruno Latour. Science in Action: How to Follow Scientists and Engineers Through Society (Cambridge: Harvard University Press, 1987).
Geographer Nigel Thrift has pointed to new developments in the early twenty-first century regarding the production of knowledge and new types of buildings as models for innovation, which he called “incubators,” see: Nigel Thrift. “Re-inventing Invention: New Tendencies in Capitalist Commodification” Economy and Society 35, no. 2 (2006): 279–306, here, 292.
Architecture in this sense might be comparable to the city as twofold “promissory assemblage”, i.e., the promises in the city and of the city, see: Alexa Färber. “How does ANT help us to rethink the city and its promises,” in The Routledge Companion to Actor-Network Theory, eds. Anders Blok, Ignacio Farias, and Celia Roberts (London and New York: Routledge, 2020): 264–272.
Under the slogan “The place where innovation starts,” EMPA today is committed to five research areas concerned with a comprehensive understanding of materials (at the atomic, molecular, and cellular scale): “Nanoscale Materials & Technologies,” “Health & Performance,” “Resources & Pollutants,” and also “Energy” and “Sustainable Built Environment.” See ➝.
The playfulness, even provocation, inherent in Gramazio Kohler’s work is explained by the firm’s biography: Fabio Gramazio was once a founding member and long-standing president of the artists’ group etoy, whose net art did not differentiate between art and commerce, and who had become internationally known by the end of the 1990s through the so-called “toywar.” following a takeover attempt and legal dispute with the online toy manufacturer eToy.
Over the course of the twentieth century, Holcim’s predecessor, Holderbank, originally a family business that benefited early on from the separation of production and financial business in the 1930s, not only rose to become established on the domestic market and achieve a quasi-monopoly position due to the interplay between banking and the state, but also expanded internationally as a trust in the post-war decades. See: Sarah Nichols. “Pollux’s Spears” Grey Room 71 (2018): 141–155. Since 2001, Holcim, then renamed, has been operating as a multinational corporation even more dominant in global markets, backed by the major Swiss banks Credit Suisse (now wound up) and UBS.
Not only is NEST based on a concrete structure, but its entrance hall displays a list of all sponsors, including Holcim. NEST is also featured on Holcim’s corporate website and has become a promotional tool to boost business. Holcim has long been trying to portray itself as environmentally conscious, for example through the communication efforts of the Holcim Foundation for Sustainable Construction, as well as by organizing a series of international conferences and a regional and global competition to channel debate and assimilate new practices. Richner mentioned that they proposed NEST for recognition in the Holcim competition, but EMPA did not receive an award for it. Holcim also funds an ETH professorship for sustainable construction.
Adrian Forty, “A Concrete Renaissance,” in Concrete and Culture: A Material History (London: Reaktion, 2012): 279–296. Architecture history has long been content to focus on concrete structures rather than the cement industry. As a continuation of this narrative, Adrian Forty concluded his media history of the modern, industrial building material with a chapter on Swiss architecture. The complexity, even complicity, is evident in the struggling historical assessment of the sustainability of the material, which has changed radically in the past decade.
N. John Habraken. Supports: An Alternative to Mass Housing (1961; London: Architectural Press, 1972). For a contemporary take, see: Sascha Roesler, “Structurally indicated potential for transformation of residential buildings,” Journal of Comparative Cultural Studies in Architecture 4 (2010): 16–23; and “Anpassungsfähiger Systembau,” in Weltkonstruktion (Berlin: Gebr. Mann, 2013): 547 ff; Hugo Priemus. “Support-Infill Revisited: The Increasing Say of Occupants”, conference paper, ETH Zurich, 2015. See ➝.
For a discussion of the complex relationship of obsolescence and sustainability as twentieth century paradigms, see: Daniel Abramson, Obsolescence: An Architectural History (Chicago: University of Chicago Press, 2016); Daniel Abramson. “Obsolescence and its Future,” in The Routledge Companion to Critical Approaches to Contemporary Architecture, ed. Swati Chattopadhyay and Jeremy White (London and New York: Routledge, 2020): 231–243.
Gramazio Kohler also took their cue from the so-called “Wohnregal” (housing shelf), which was erected on a derelict site in Berlin-Kreuzberg by a self-building cooperative based on a design by Peter Stürzebecher, Kjell Nylund, and Christof Puttfarke as part of the International Building Exhibition (IBA) in 1984/87. Yet, NEST also recalls another IBA project, Frei Otto’s and Hermann Kendell’s “Öko-Häuser” (eco-houses). These, too, were concrete structures within which single housing units were built. One major difference, however, is that the three eco-houses, a pilot and demonstration project of IBA’s research field “Natur und Bauen” (nature and building), were in a close ecological relationship with the land they occupied (i.e., unsealed soil, local water cycles, existing vegetation, and ultimately urban wildlife), while NEST is detached from the land in the middle of a science campus. I have written more extensively on the eco-houses of IBA, see: Kim Förster. “The Green IBA: On a Politics of Renewal, Ecology, and Solidarity,” Candide 11 (2019): 9–50, ➝; and “Wie bauen, wie weiter leben? Frei Ottos Vision vom ökologischen und gemeinsamen Bauen,” Bauwelt 20 (2015): 28–29, ➝.
Abramson, “Obsolescence and its Future,” 233.
Other literary tours were also referenced, such as Bertolt Brecht’s short story “Nordseekrabben oder Die moderne Bauhaus-Wohnung,” Münchner Neueste Nachrichten, January 7, 1927, in which two former World War I combatants, in a first round, are shown around the apartment of their fellow combatant, snobbishly furnished in the modernist style, only to completely destroy it in a second round, after sending the owner away on the pretext of getting North Sea crabs.
Adalbert Stifter. “Das graue Schloss,” in Die Narrenburg, (1842; Zurich: E.A. Hofmann Verlag, 1943): 47–117. Hans-Georg von Arburg in a recent essay of the Stifter-reception writes about the relationship of architecture and text conditioning one another, and the tension between styles and epochs, see: Hans-Georg von Arburg. “Neues von der Narrenburg. Stifters Architekturen zwischen Historismus und Neuem Bauen,” in Figuren der Übertragung. Adalbert Stifter und das Wissen seiner Zeit, eds. Michael Gamper and Karl Wagner (Zurich: Chronos Verlag, 2009): 109–133. Here, von Arburg discusses building styles and lifestyles in relation to literary styles, contrasting Gottfried Semper’s and Sigfried Giedion’s theoretical positions, i.e., plainly put, decoration and construction, both of which take on new significance given the polycrises not just in, but of the Anthropocene. In Stifter’s case, however, writing at the peak of the industrial age, “gray” still refers to iron, not concrete.
In addition, NEST features neo-baroque and neo-modernist allusions cast in concrete. In architecture history, the baroque style, which characterized the façades of Prussian castles, had been taken up again in the façades of university buildings, government buildings, and company headquarters in the nineteenth and twentieth centuries. The modern era then produced concrete structures that were prefabricated and poured in situ.
In German, there is a word for this, “Bauwende,” along with “Energiewende” and also “Materialwende,” that includes quite different measures designed to make construction carbon-neutral and more resource-efficient, but produces a variety of definitions, including the transition to circular and biogenic materials.
One of the great ruin narratives in recent times has been Anna Lowenhaupt Tsing’s The Mushroom at the End of the World: On the Possibility of Life in Capitalist Ruins (Princeton: Princeton University Press, 2015). While her anthropological fieldwork on the matsutake mushroom, forestry, foraging, and timber extraction and critique of globalized capitalism initially focused on all kinds of supply chains, including building materials, this unlikely assemblage becomes an allegory for the state of the world in which we live. See also: Anna Lowenhaupt Tsing. “What Is Emerging? Supply Chains and the Remaking of Asia” The Professional Geographer 68, no. 2 (2015): 330–337.
Both systems represent a decoupling from municipal and private providers and are instead modulated by strategies of self-management and self-sufficiency. For a discussion of promises in the city, with “infrastructure as common good”, see: Färber. “How does ANT help us to rethink the city and its promises,” 269. For a definition of commons, and of communing, to be applied to “non-rivalrous” and “rivalrous” energy sources and resources, and their politicization in terms of boundaries, rules, and communication among users, see: Silke Helfrich and David Bollier. “Commons,” in Degrowth: A Vocabulary for a New Era, eds. Giacomo D’Alisa, Federico Demaria, and Giorgos Kallis (London and New York: Routledge, 2015): 102–105.
For a discussion of an architectural ecology, see: Barnabas Calder and G. A. Bremner, “Buildings and Energy: Architectural History in the Climate Emergency,” The Journal of Architecture 26, no. 2 (2021): 79–115. For a discussion of an infrastructural ecology, see: Florian Sprenger, Epistemologien des Umgebens. Zur Geschichte, Ökologie und Biopolitik künstlicher Environments (Bielefeld: Transcript Verlag, 2019).
The reason, in Stifter’s words, might be twofold: firstly, that EMPA, which since its inception has been charged with researching and ultimately legitimizing the use of modern industrial materials, would be concerned with avoiding “folly” and “rashness”; and secondly, that architects and researchers invited to contribute solutions to the energy and materials conundrum, entering the market, would avoid “vice” and “malpractice.”
We were told NEST is reinventing the relationship between architecture and materials from the inside out, but there was no mention of the great impact that the building materials industry and the construction industry (and architecture as a social and cultural factor, and therefore architecture criticism) have on the environment through carbon emissions from construction and large-scale demolition waste generation.
The design process for the dfab House was complex and its design concept integrated novel digital building processes by eight ETH Zurich professorships, next to Gramazio and Kohler also of the Digital Building Technologies Group, the Agile & Dexterous Robotics Lab, the Chair of Physical Chemistry of Building Materials, the Chair of Structural Design, the Chair of Structural Engineering – Concrete Structures and Bridge Design, and the Chair of Sustainable Construction.
Especially the large real estate holdings, pension funds, and insurance companies that have been increasingly investing in fixed assets since the 1990s.
The National Centres of Competence in Research work on “digital fabrication” was funded by the Swiss National Science Foundation and managed by Fabio Gramazio and Matthias Kohler; see ➝. It is an initiative for the strategic development and integration of digital technologies in architecture, on which researchers from eight ETH professorships are working in collaboration with forty industrial partners. The management has since been transferred to Philippe Block, also a Professor of Architecture and Structure at ETH and, since 2020, a member of the Board of Directors of Holcim.
“NCCR Digital Fabrication,” Swiss National Sciences Foundation. See ➝.
On the six innovations—four for concrete, two for wooden construction—in digital fabrication, as is possible at ETH with their equipment, for example, in the Robotic Fabrication Laboratory, see: Konrad Graser et al., “Social Network Analysis of dfab House: A Demonstrator of Digital Fabrication in Construction,” Working Paper Proceedings, 17th Engineering Project Organization Conference, Vail, Colorado, 2019.
Lionel Devlieger, “Reverse Architecture. The Virtues of Unbuilding and Reassembling,” in Rewriting Architecture, 10+1 Actions, eds. Floris Alkemade, Michiel Minkjan, Mark van Iersel, and Jarik Ouburg (Amsterdam: Valiz, 2020): 146–152. In this sense, UMAR to some extent continues and brings to the market what ROTOR DC once established in Brussels, in scouting salvageable materials, extracting them, and making them available again. Ironically, ROTOR DC contributed a door handle to UMAR, while being more than a door opener. See also: Dirk Hebel, Marta Wisniewska, and Felix Heisel, eds., Building from Waste (Basel: Birkhäuser, 2014); Dirk Hebel and Felix Heisel, Circular Construction and Circular Economy. Fundamentals Case Studies, Strategies (Basel: Birkhäuser: 2022).
Felix Heisel. “Reuse and Recycling. Materializing a Circular Construction,” in The Materials Book, eds. Ilka Ruby and Andreas Ruby (Berlin: Ruby Press, 2020): 156–160; Dirk Hebel and Felix Heisel. “Cultivated Building Materials: The Fourth Industrial Revolution,” in Ruby and Ruby, eds., The Materials Book, 145–149.
The idea of a comprehensive survey was also promoted by the City of Zurich at the time.
This only becomes relevant when applied to all existing building stock and not only to newly approved and constructed buildings. Barbara Buser. “Re-use!,” in Re-use in Construction. A Compendium in Circular Construction, ed. Institute of Constructive Design; ZHAW School of Architecture, Design and Civil Engineering; Eva Stricker, Guido Brandi, and Andreas Sonderegger (Zurich: Park Books, 2022): 11–16.
By contrasting conventional dwellings, single-family houses, and urban apartments made of different materials, based on the recently constructed building stock in Switzerland as a case study, they have calculated the cumulative energy demand, global warming potential, and environmental impact of contemporary construction to argue for a transition away from concrete and towards timber, a circular and regenerative material; see: Efstathios Kakkos, Felix Heisel, Dirk Hebel, and Roland Hischier. “Towards Urban Mining—Estimating the Potential Environmental Benefits by Applying an Alternative Construction Practice. A Case Study from Switzerland” Sustainability, 12 (2020): 5041.
This explains the fear of the disappearance of small and medium sized businesses, construction jobs, and craftmanship as we know them. Adrian Forty, “Forget Material,” in Expanding Fields of Architectural Discourse and Practice: Curated Works from the P.E.A.R. Journal, ed. Matthew Butcher and Megan O’Shea (London: UCL Press, 2020): 357–361. For a discussion on the last big shift in the relation of concrete, capital, labour, and the construction site beginning of the twentieth century, see: Michael Osman, “Managerial Aesthetics of Concrete” Perspecta, no. 45 (2012): 67–76.
Charlotte Malterre-Barthes, “The Devil is in the Details: Who is it that the Earth Belongs to?,” in Non-Extractive Architecture: On Designing without Depletion, vol. 1, ed. Space Caviar (Berlin: Sternberg Press, 2021): 85–96.
Ilka Ruby and Andreas Ruby. “Mine the City,” in Re-Inventing Construction, ed. Ilka Ruby and Andreas Ruby (Berlin: Ruby Press, 2010): 243–247; Mazen Labban. “Rhythms of Wasting / Unbuilding the Built Environment,” New Geographies no. 10 (2019): 33–41.
It remained unsaid whether and to what extent trade union issues such as wage dumping, precarious employment, and permanent stress are addressed with NEST.
The thumbnail photograph, taken by an amateur photographer, has since been removed from Google Earth and replaced with a proper photograph of NEST.
According to EMPA, the maintenance and repair of the existing building stock and infrastructure would already require the volume of cement currently produced. In 2015, EMPA was involved in a study on “Bauwerk Schweiz” (“the built fabric of Switzerland”), which looked at the building stock nationwide, quantities of material built with, and energy imported for it, to advocate for a better efficiency in material and energy flows, given an annual consumption of forty million tons of concrete to either retrofit and extend. Accordingly, concrete, gravel, and sand constitutes the majority (75%) of material flows in Switzerland. See: Marcel Gauch et al. Projekt MatCH – Bau, Material- und Energieressourcen sowie Umweltauswirkungen der baulichen Infrastruktur der Schweiz (St. Gallen: EMPA—Materials Science & Technology, 2016): 2; For a problematization of life cycles, see also: Lucia Allais and Forrest Meggers. “Concrete Is One Hundred Years Old. The Carbonation Equation and Narratives of Anthropogenic Change,” in Writing Architectural History: Evidence and Narrative in the Twenty-First Century, ed. Aggregate (Pittsburgh: University of Pittsburgh Press, 2021): 75–89.
Urs Rey. Zürich baut sich neu. Ersatzneubauprojekte 2004–2015 (Zurich: Statistik Stadt Zürich, 2015).
Countdown 2030, who installed the digital clock on January 1, 2020, is a Basel-based architecture group that had formed shortly before, and who have since been involved in a lot of the “bottom up” approaches to achieving “net zero” in architecture. After S AM, the countdown was exhibited at Bund Schweizer Architekten in Basel, Hochparterre in Zurich, istituto internazionale di architettura in Lugano, andZentrum Architektur Zürich in Zurich. However, the countdown was never shown at NEST.
For the conclusion, I interviewed Kerstin Müller and Oliver Seidel on June 19, 2023.
“K.118 – Kopfbau Halle 118,” Baubüro in situ. See ➝. See also: Institute of Constructive Design, ZHAW School of Architecture, eds., Reuse in Construction: A Compendium of Circular Architecture (Zurich: Park Books, 2022). Baubüro in situ was awarded a prize by the Holcim Foundation for K118; they explained what they had invested the prize money in, including translation of the publication and networking.
A partition wall made from clay by the Zurich start-up Oxara, easily re-useable since it is not mixed with cement, had not yet been realized at that time.
Marc Angst, one of the architects of K118, interviewed on May 16, 2023. Angst highlighted that Baubüro in situ work with the Swiss Society of Engineers and Architects (SIA) to reformulate SIA norms for reuse. They also participate in political life and democratic processes by advising on petitions at the national level.
In this spirit, Charlotte Malterre-Barthes, following Bruno Latour’s suggestion to pause once in the midst of the Covid 19 pandemic, had called for what she called a “global moratorium on new construction.” Charlotte Malterre-Barthes, “A Global Moratorium on New Construction.” See ➝.
In this sense, Zirkular, in collaboration with researchers of EPFL Lausanne, has begun to test and validate the reuse of concrete elements (while EMPA has been investing in CO2-negative CSA cement, which is double-edged, since it suggests that building with concrete can continue as before). Celia Küpfer, Maléna Bastien-Masse, and Corentin Fivet, “Reuse of Concrete Components in New Construction Projects: Critical Review of 77 Circular Precedents,” Journal of Cleaner Production 383 (2023): 135235.
This article was written in the context of a larger research project that concerns global cement. Thanks to the interviewees (Marc Angst, Fabio Gramazio, Matthias Kohler, Kerstin Müller, Peter Richner, Oliver Seidel), readers (Brett Mommersteeg, Sascha Roesler, Hans-Georg von Arburg), and those who provided valuable feedback on the various occasions where I have presented this research.